Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.740
Filtrar
1.
Curr Opin Pediatr ; 36(3): 331-341, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38655812

RESUMO

PURPOSE OF REVIEW: We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS: We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY: Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.


Assuntos
Terapia Genética , Humanos , Criança , Terapia Genética/métodos , Transtornos dos Movimentos/terapia , Estimulação Encefálica Profunda , Síndrome de Tourette/terapia , Síndrome de Tourette/genética , Medicina de Precisão/métodos , Ataxia de Friedreich/terapia , Ataxia de Friedreich/genética , Síndrome de Rett/genética , Síndrome de Rett/terapia
2.
Sci Rep ; 14(1): 7376, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548767

RESUMO

CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by global developmental delay, early-onset seizures, intellectual disability, visual and motor impairments. Unlike Rett Syndrome (RTT), CDD lacks a clear regression period. Patients with CDD frequently encounter gastrointestinal (GI) disturbances and exhibit signs of subclinical immune dysregulation. However, the underlying causes of these conditions remain elusive. Emerging studies indicate a potential connection between neurological disorders and gut microbiota, an area completely unexplored in CDD. We conducted a pioneering study, analyzing fecal microbiota composition in individuals with CDD (n = 17) and their healthy relatives (n = 17). Notably, differences in intestinal bacterial diversity and composition were identified in CDD patients. In particular, at genus level, CDD microbial communities were characterized by an increase in the relative abundance of Clostridium_AQ, Eggerthella, Streptococcus, and Erysipelatoclostridium, and by a decrease in Eubacterium, Dorea, Odoribacter, Intestinomonas, and Gemmiger, pointing toward a dysbiotic profile. We further investigated microbiota changes based on the severity of GI issues, seizure frequency, sleep disorders, food intake type, impairment in neuro-behavioral features and ambulation capacity. Enrichment in Lachnoclostridium and Enterobacteriaceae was observed in the microbiota of patients with more severe GI symptoms, while Clostridiaceae, Peptostreptococcaceae, Coriobacteriaceae, Erysipelotrichaceae, Christensenellaceae, and Ruminococcaceae were enriched in patients experiencing daily epileptic seizures. Our findings suggest a potential connection between CDD, microbiota and symptom severity. This study marks the first exploration of the gut-microbiota-brain axis in subjects with CDD. It adds to the growing body of research emphasizing the role of the gut microbiota in neurodevelopmental disorders and opens doors to potential interventions that target intestinal microbes with the aim of improving the lives of patients with CDD.


Assuntos
Síndromes Epilépticas , Microbioma Gastrointestinal , Síndrome de Rett , Espasmos Infantis , Humanos , Microbioma Gastrointestinal/fisiologia , Síndrome de Rett/genética , Convulsões , Proteínas Serina-Treonina Quinases
3.
Autism Res ; 17(4): 775-784, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38433353

RESUMO

The methyl CpG-binding protein-2 (MECP2) gene is located on the Xq28 region. Loss of function mutations or increased copies of MECP2 result in Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), respectively. Individuals with both disorders exhibit overlapping autism symptoms, yet few studies have dissected the differences between these gene dosage sensitive disorders. Further, research examining sensory processing patterns in persons with RTT and MDS is largely absent. Thus, the goal of this study was to analyze and compare sensory processing patterns in persons with RTT and MDS. Towards this goal, caregivers of 50 female individuals with RTT and 122 male individuals with MDS, between 1 and 46 years of age, completed a standardized measure of sensory processing, the Sensory Experiences Questionnaire. Patterns detected in both disorders were compared against each other and against normative values. We found sensory processing abnormalities for both hyper- and hypo-sensitivity in both groups. Interestingly, abnormalities in MDS were more pronounced compared with in RTT, particularly with items concerning hypersensitivity and sensory seeking, but not hyposensitivity. Individuals with MDS also exhibited greater sensory symptoms compared with RTT in the areas of tactile and vestibular sensory processing and for both social and nonsocial stimuli. This study provides a first description of sensory symptoms in individuals with RTT and individuals with MDS. Similar to other neurodevelopmental disorders, a variety of sensory processing abnormalities was found. These findings reveal a first insight into sensory processing abnormalities caused by a dosage sensitive gene and may ultimately help guide therapeutic approaches for these disorders.


Assuntos
Transtorno do Espectro Autista , Síndrome de Rett , Masculino , Humanos , Feminino , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Mutação
4.
Genes (Basel) ; 15(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38540345

RESUMO

Systematic data on endocrinopathies in Rett syndrome (RTT) patients remain limited and inconclusive. The aim of this retrospective observational two-center study was to assess the prevalence of endocrinopathies in a pediatric population of RTT patients. A total of 51 Caucasian patients (47 girls, 4 boys) with a genetically confirmed diagnosis of RTT were enrolled (mean age 9.65 ± 5.9 years). The patients were referred from the Rett Center of two Italian Hospitals for endocrinological evaluation. All the study population underwent clinical and auxological assessments and hormonal workups. MeCP2 mutations were detected in 38 cases (74.5%), CDKL5 deletions in 11 (21.6%), and FOXG1 mutations in 2 (3.9%). Overall, 40 patients were treated with anti-seizure medications. The most frequent endocrinological finding was short stature (47%), followed by menstrual cycle abnormalities (46.2%), weight disorders (45.1%), low bone mineral density (19.6%), hyperprolactinemia (13.7%) and thyroid disorders (9.8%). In the entire study population, endocrinopathies were significantly more frequent in patients with MeCP2 mutations (p = 0.0005), and epilepsy was more frequent in CDKL5 deletions (p = 0.02). In conclusion, our data highlighted that endocrinopathies are not rare in RTT, especially in patients with MeCP2 deletions. Therefore, in the context of a multidisciplinary approach, endocrinological evaluation should be recommended for RTT patients.


Assuntos
Doenças do Sistema Endócrino , Síndrome de Rett , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Doenças do Sistema Endócrino/epidemiologia , Doenças do Sistema Endócrino/genética , Mutação , Prevalência , Proteínas Serina-Treonina Quinases/genética , Estudos Retrospectivos , Síndrome de Rett/epidemiologia , Síndrome de Rett/genética
5.
Nucleic Acids Res ; 52(7): 3636-3653, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321951

RESUMO

MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.


Assuntos
Epigênese Genética , Histonas , Proteína 2 de Ligação a Metil-CpG , Nucleossomos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Nucleossomos/metabolismo , Histonas/metabolismo , Humanos , Ligação Proteica , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Mutação , Animais
6.
J Gene Med ; 26(2): e3677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380785

RESUMO

Rett syndrome (RTT) is a rare but dreadful X-linked genetic disease that mainly affects young girls. It is a neurological disease that affects nerve cell development and function, resulting in severe motor and intellectual disabilities. To date, no cure is available for treating this disease. In 90% of the cases, RTT is caused by a mutation in methyl-CpG-binding protein 2 (MECP2), a transcription factor involved in the repression and activation of transcription. MECP2 is known to regulate several target genes and is involved in different physiological functions. Mouse models exhibit a broad range of phenotypes in recapitulating human RTT symptoms; however, understanding the disease mechanisms remains incomplete, and many potential RTT treatments developed in mouse models have not shown translational effectiveness in human trials. Recent data hint that the zebrafish model emulates similar disrupted neurological functions following mutation of the mecp2 gene. This suggests that zebrafish can be used to understand the onset and progression of RTT pathophysiology and develop a possible cure. In this review, we elaborate on the molecular basis of RTT pathophysiology in humans and model organisms, including rodents and zebrafish, focusing on the zebrafish model to understand the molecular pathophysiology and the development of therapeutic strategies for RTT. Finally, we propose a rational treatment strategy, including antisense oligonucleotides, small interfering RNA technology and induced pluripotent stem cell-derived cell therapy.


Assuntos
Deficiência Intelectual , Síndrome de Rett , Camundongos , Animais , Feminino , Humanos , Síndrome de Rett/genética , Síndrome de Rett/terapia , Peixe-Zebra/genética , Regulação da Expressão Gênica , Mutação
7.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38199865

RESUMO

Regression is a key feature of neurodevelopmental disorders such as autism spectrum disorder, Fragile X syndrome, and Rett syndrome (RTT). RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). It is characterized by an early period of typical development with subsequent regression of previously acquired motor and speech skills in girls. The syndromic phenotypes are individualistic and dynamic over time. Thus far, it has been difficult to capture these dynamics and syndromic heterogeneity in the preclinical Mecp2-heterozygous female mouse model (Het). The emergence of computational neuroethology tools allows for robust analysis of complex and dynamic behaviors to model endophenotypes in preclinical models. Toward this first step, we utilized DeepLabCut, a marker-less pose estimation software to quantify trajectory kinematics and multidimensional analysis to characterize behavioral heterogeneity in Het in the previously benchmarked, ethologically relevant social cognition task of pup retrieval. We report the identification of two distinct phenotypes of adult Het: Het that display a delay in efficiency in early days and then improve over days like wild-type mice and Het that regress and perform worse in later days. Furthermore, regression is dependent on age and behavioral context and can be detected in the initial days of retrieval. Together, the novel identification of two populations of Het suggests differential effects on neural circuitry, opens new avenues to investigate the underlying molecular and cellular mechanisms of heterogeneity, and designs better studies for stratifying therapeutics.


Assuntos
Transtorno do Espectro Autista , Síndrome de Rett , Humanos , Feminino , Animais , Camundongos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fenótipo , Mutação/genética , Comportamento Social , Modelos Animais de Doenças
8.
Stem Cells Dev ; 33(5-6): 128-142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164119

RESUMO

Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked methyl-CpG-binding protein gene (MECP2), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes. In this study, we use a direct reprogramming method for the generation of neuronal cells from MeCP2-deficient and wild-type human dermal fibroblasts using two episomal plasmids encoding the transcription factors SOX2 and PAX6. We demonstrated that the obtained neurons exhibit a typical neuronal morphology and express the appropriate marker proteins. RNA-sequencing confirmed neuronal identity of the obtained MeCP2-deficient and wild-type neurons. Furthermore, these MeCP2-deficient neurons reflect the pathophysiology of RTT in vitro, with diminished dendritic arborization and hyperacetylation of histone H3 and H4. Treatment with MeCP2, tethered to the cell penetrating peptide TAT, ameliorated hyperacetylation of H4K16 in MeCP2-deficient neurons, which strengthens the RTT relevance of this cell model. We generated a neuronal model based on direct reprogramming derived from patient fibroblasts, providing a powerful tool to study disease mechanisms and investigating novel treatment options for RTT.


Assuntos
Síndrome de Rett , Humanos , Feminino , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Neurônios/metabolismo , Histonas/metabolismo , Encéfalo/patologia , Mutação
9.
Epilepsy Res ; 200: 107287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237219

RESUMO

PURPOSE: Validated measures capable of demonstrating meaningful interventional change in the CDKL5 deficiency disorder (CDD) are lacking. The study objective was to modify the Rett Syndrome Gross Motor Scale (RSGMS) and evaluate its psychometric properties for individuals with CDD. METHODS: Item and scoring categories of the RSGMS were modified. Caregivers registered with the International CDKL5 Clinical Research Network uploaded motor videos filmed at home to a protected server and completed a feedback questionnaire (n = 70). Rasch (n = 137), known groups (n = 109), and intra- and inter-rater reliability analyses (n = 50) were conducted. RESULTS: The age of individuals with CDD ranged from 1.5 to 34.1 years. The modified scale, Gross Motor-Complex Disability (GM-CD), comprised 17 items. There were no floor or ceiling effects and inter- and intra-rater reliability were good. Rasch analysis demonstrated that the items encompassed a large range of performance difficulty, although there was some item redundancy and some disordered categories. One item, Prone Head Position, was a poor fit. Caregiver-reported acceptability was positive. Scores differed by age and functional abilities. SUMMARY: GM-CD appears to be a suitable remotely administered measure and psychometrically sound for individuals with CDD. This study provides the foundation to propose the use of GM-CD in CDD clinical trials. Longitudinal evaluation is planned.


Assuntos
Síndromes Epilépticas , Síndrome de Rett , Espasmos Infantis , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Psicometria , Destreza Motora , Reprodutibilidade dos Testes , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Proteínas Serina-Treonina Quinases/genética
10.
Pediatr Neurol ; 152: 153-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290182

RESUMO

BACKGROUND: This study investigates the distinctive social behaviors observed in individuals with Rett syndrome (RTT), characterized by the loss of spoken language, impaired eye gaze communication, gait abnormalities, and sleep issues. The research aims to identify social profiles in RTT and explore their correlation with sleep, sleep-disordered breathing (SDB), and daytime sleepiness. METHODS: Standard overnight sleep macrostructure and respiratory parameters were assessed. Extracting 25 social-related items and one for daytime sleepiness from the Rett Syndrome Behavioral Questionnaire, factor analysis was applied to establish latent social profiles. These profiles were then correlated with sleep parameters. The nonparametric Mann-Whitney U test compared social profiles based on the presence of SDB (defined by an apnea-hypopnea index greater than one per hour) and daytime sleepiness. RESULTS: The study involved 12 female subjects with confirmed RTT diagnoses and MECP2 mutations, aged 8.54 ± 5.30 years. The Rett Syndrome Behavioral Questionnaire revealed a total average score of 25.83 ± 12.34, indicating varying degrees of social impairments. Comprising 25 social-related items, factor analysis yielded four social profiles: "interactive motricity," "mood change," "anxiety/agitation," and "gazing." Longer sleep onset latency correlated with increased socio-behavioral impairments, particularly in interactive motricity reduction. Conversely, higher rapid eye movement sleep was associated with fewer interactive socio-motor behaviors. No significant differences in social profiles were found concerning the presence of SDB or daytime sleepiness. CONCLUSIONS: The findings suggest four distinct social profiles in RTT individuals, hinting at shared disrupted circuits between sensorimotor functioning and sleep-related neuronal pathways. Despite the absence of differences in SDB or daytime sleepiness, the study highlights the relationship between sleep parameters, such as sleep onset latency and rapid eye movement sleep, and socio-behavioral outcomes in RTT with MECP2 mutations.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Síndrome de Rett , Síndromes da Apneia do Sono , Humanos , Feminino , Síndrome de Rett/complicações , Síndrome de Rett/genética , Polissonografia , Sono , Síndromes da Apneia do Sono/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/complicações
11.
Orphanet J Rare Dis ; 19(1): 34, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291497

RESUMO

BACKGROUND: Rett syndrome (RTT) is a rare neurodevelopmental condition associated with mutations in the gene coding for the methyl-CpG-binding protein 2 (MECP2). It is primarily observed in girls and affects individuals globally. The understanding of the neurobiology of RTT and patient management has been improved by studies that describe the demographic and clinical presentation of individuals with RTT. However, in Ireland, there is a scarcity of data regarding individuals with RTT, which impedes the ability to fully characterize the Irish RTT population. Together with the Rett Syndrome Association of Ireland (RSAI), we prepared a questionnaire to determine the characteristics of RTT individuals in Ireland. Twenty-five families have participated in the study to date, providing information about demographics, genetics, familial history, clinical features, and regression. RESULTS: The results show that Irish individuals with RTT have comparable presentation with respect to individuals in other countries; however, they had a better response to anti-epileptic drugs, and fewer skeletal deformities were reported. Nonetheless, seizures, involuntary movements and regression were more frequently observed in Irish individuals. One of the main findings of this study is the limited genetic information available to individuals to support the clinical diagnosis of RTT. CONCLUSIONS: Despite the limited sample size, this study is the first to characterize the RTT population in Ireland and highlights the importance of having a swift access to genetic testing to sharpen the characterization of the phenotype and increase the visibility of Irish individuals in the international RTT community.


Assuntos
Síndrome de Rett , Feminino , Humanos , Síndrome de Rett/epidemiologia , Síndrome de Rett/genética , Irlanda/epidemiologia , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Fenótipo , Demografia
12.
Neuroscience ; 537: 189-204, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38036056

RESUMO

Rett syndrome (RTT) is a debilitating neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG-binding protein 2 (MeCP2) gene, resulting in severe deficits in learning and memory. Alterations in synaptic plasticity have been reported in RTT, however most electrophysiological studies have been performed in male mice only, despite the fact that RTT is primarily found in females. In addition, most studies have focused on excitation, despite the emerging evidence for the important role of inhibition in learning and memory. Here, we performed an electrophysiological characterization in the CA1 region of the hippocampus in both males and females of RTT mouse models with a focus on neurogliaform (NGF) interneurons, given that they are the most abundant dendrite-targeting interneuron subtype in the hippocampus. We found that theta-burst stimulation (TBS) failed to induce long-term potentiation (LTP) in either pyramidal neurons or NGF interneurons in male or female RTT mice, with no apparent changes in short-term plasticity (STP). This failure to induce LTP was accompanied by excitation/inhibition (E/I) imbalances and altered excitability, in a sex- and cell-type specific manner. Specifically, NGF interneurons of male RTT mice displayed increased intrinsic excitability, a depolarized resting membrane potential, and decreased E/I balance, while in female RTT mice, the resting membrane potential was depolarized. Understanding the role of NGF interneurons in RTT animal models is crucial for developing targeted treatments to improve cognition in individuals with this disorder.


Assuntos
Síndrome de Rett , Masculino , Feminino , Camundongos , Animais , Síndrome de Rett/genética , Potenciação de Longa Duração , Proteína 2 de Ligação a Metil-CpG/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/genética , Modelos Animais de Doenças
14.
Am J Med Genet A ; 194(2): 160-173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37768187

RESUMO

Rett syndrome (RTT) is a progressive neurodevelopmental disorder, and pathogenic Methyl-CpG-binding Protein 2 (MECP2) variants are identified in >95% of individuals with typical RTT. Most of RTT-causing variants in MECP2 are de novo and usually on the paternally inherited X chromosome. While paternal age has been reported to be associated with increased risk of genetic disorders, it is unknown whether parental age contributes to the risk of the development of RTT. Clinical data including parental age, RTT diagnostic status, and clinical severity are collected from 1226 participants with RTT and confirmed MECP2 variants. Statistical analyses are performed using Student t-test, single factor analysis of variance (ANOVA), and multi-factor regression. No significant difference is observed in parental ages of RTT probands compared to that of the general population. A small increase in parental ages is observed in participants with missense variants compared to those with nonsense variants. When we evaluate the association between clinical severity and parental ages by multiple regression analysis, there is no clear association between clinical severity and parental ages. Advanced parental ages do not appear to be a risk factor for RTT, and do not contribute to the clinical severity in individuals with RTT.


Assuntos
Síndrome de Rett , Humanos , Síndrome de Rett/diagnóstico , Síndrome de Rett/epidemiologia , Síndrome de Rett/genética , Mutação , Proteína 2 de Ligação a Metil-CpG/genética , Cromossomos Humanos X , Pais
15.
Altern Ther Health Med ; 30(1): 167-171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37773669

RESUMO

Background: Rett syndrome (RTT) is now widely recognized as a profound neurological disorder that predominantly affects females and is closely associated with mutations in the methylated CpG binding protein 2 (MECP2) gene located on the X chromosome. The Characteristic symptoms of RTT include the loss of acquired language and motor skills, repetitive hand movements, irregular breathing, and seizures. Additionally, RTT patients may experience sporadic episodes of gastrointestinal problems, hypoplasia, early-onset osteoporosis, bruxism, and screaming episodes. It is worth noting that males exhibit a unique and variable phenotype, though rare in RTT cases, often accompanied by severe manifestations. Case Presentation: In this report, we present the case of a young male child with a de novo c.806delG hemizygous mutation, leading to an atypical presentation of RTT that remarkably mirrors the clinical features of Bartter syndrome, a genetic metabolic disorder. The clinical manifestations in this case included the loss of previously acquired language and motor skills, repetitive hand movements, breathing irregularities, seizures, sporadic episodes of gastrointestinal distress, hypoplasia, early-onset osteoporosis, bruxism, and episodes of screaming. This distinctive presentation underscores the complex diagnostic landscape of RTT, particularly in males, and highlights the need for vigilant clinical evaluation. Conclusions: This case report sheds light on an unusual and atypical presentation of RTT in a young male child with a de novo c.806delG hemizygous mutation. The resemblance of clinical features to Bartter syndrome underscores the diagnostic challenges posed by RTT and highlights the importance of comprehensive clinical assessment and genetic testing, especially in cases deviating from the typical RTT phenotype. Our findings contribute valuable insights into the early diagnosis and management of atypical RTT presentations.


Assuntos
Alcalose , Síndrome de Bartter , Bruxismo , Osteoporose , Síndrome de Rett , Criança , Feminino , Humanos , Masculino , Síndrome de Rett/complicações , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Proteína 2 de Ligação a Metil-CpG/genética , Hipóxia , Convulsões
16.
Stem Cell Res ; 74: 103268, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100910

RESUMO

The human iPS cell line, hiPS-RTT (FJMUi002-A), is derived from peripheral blood mononuclear cells (PBMCs) from a 12-year-old female RTT patient carrying a heterozygous p. R133C (c.397C > T) mutation in the MeCP2 gene. The hiPS-RTT cell line was generated by non-integrative reprogramming vectors encoding OCT3/4, SOX2, KLF4, and c-MYC and was free of genomically integrated reprogramming genes. The hiPS-RTT cell line had a normal karyotype, expressed pluripotency markers, and had capacity to form three germ layers in vitro and in vivo, which offering a useful resource to study the pathogenesis and treatment strategies of RTT.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Rett , Criança , Feminino , Humanos , Diferenciação Celular , Linhagem Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares , Mutação/genética , Síndrome de Rett/genética
17.
Arch Biochem Biophys ; 752: 109860, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110111

RESUMO

Mutations in the X-linked methyl-CpG-binding 2 (MECP2) gene lead to Rett Syndrome (RTT; OMIM 312750), a devasting neurodevelopmental disorder. RTT clinical manifestations are complex and with different degrees of severity, going from autistic-like behavior to loss of acquired speech, motor skills and cardiac problems. Furthermore, the correlation between the type of MECP2 mutation and the clinical phenotype is still not fully understood. Contextually, different genotypes can differently affect the patient's phenotype and omics methodologies such as proteomics could be an important tool for a molecular characterization of genotype/phenotype correlation. The aim of our study was focused on evaluating RTT oxidative stress (OS) responses related to specific MECP2 gene mutations by using proteomics and bioinformatics approaches. Primary fibroblasts isolated from patients affected by R133C and R255× mutations were compared to healthy controls (HC). After clustering primary dermal fibroblasts based on their specific MECP2 mutations, fibroblast-derived protein samples were qualitative and quantitative analyzed, using a label free quantification (LFQ) analysis by mass spectrometry (MS), achieving a preliminary correlation for RTT genotype/phenotype. Among the identified proteins involved in redox regulation pathways, NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) was found to be absent in R255× cells, while it was present in R133C and in HC fibroblasts. Moreover, NQO1 aberrant gene regulation was also confirmed when cells were challenged with 100 µM hydrogen peroxide (H2O2). In conclusion, by employing a multidisciplinary approach encompassing proteomics and bioinformatics analyses, as well as molecular biology assays, the study uncovered phenotypic responses linked to specific MECP2 gene mutations. These findings contribute to a better understanding of the complexity of RTT molecular pathways, confirming the high heterogeneity among the patients.


Assuntos
Síndrome de Rett , Humanos , Peróxido de Hidrogênio , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Oxirredução , Fenótipo , Proteínas , Proteômica , Síndrome de Rett/genética
18.
Exp Biol Med (Maywood) ; 248(22): 2095-2108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38057990

RESUMO

Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.


Assuntos
Síndrome de Rett , Espasmos Infantis , Simportadores , Humanos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Mutação , Proteína 4 Homóloga a Disks-Large/genética , Simportadores/genética
19.
Cell Rep ; 42(12): 113538, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096051

RESUMO

A unique signature of neurons is the high expression of the longest genes in the genome. These genes have essential neuronal functions, and disruption of their expression has been implicated in neurological disorders. DNA topoisomerases resolve DNA topological constraints and facilitate neuronal long gene expression. Conversely, the Rett syndrome protein, methyl-CpG-binding protein 2 (MeCP2), can transcriptionally repress long genes. How these factors regulate long genes is not well understood, and whether they interact is not known. Here, we identify and map a functional interaction between MeCP2 and topoisomerase IIß (TOP2ß) in mouse neurons. We profile neuronal TOP2ß activity genome wide, detecting enrichment at regulatory regions and gene bodies of long genes, including MeCP2-regulated genes. We show that loss and overexpression of MeCP2 alter TOP2ß activity at MeCP2-regulated genes. These findings uncover a mechanism of TOP2ß inhibition by MeCP2 in neurons and implicate TOP2ß dysregulation in disorders caused by MeCP2 disruption.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Animais , Camundongos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Síndrome de Rett/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-38082932

RESUMO

Rett syndrome (RTT) is considered a rare disease despite being the leading genetic disorder to cause severe intellectual disability in women. There is no cure for RTT, so the treatment is symptomatic and supporting, requiring a multidisciplinary approach. Occupational therapy can help girls and their families to improve communication, being one of the main concerns when verbal language and intentional hand movement are impaired or lost. This paper presents a pilot study of cognitive training through the combined use of eye-tracking technology (ETT) and augmentative and alternative communication (AAC) using the Peabody Picture Vocabulary Test (PPVT-IV). The objective was to evaluate brain activation by means of electroencephalography (EEG) during the stimulation of non-verbal communication. EEG data were recorded during an eyes-open resting state (EO-RS) period and during cognitive stimulation via AAC activity. To assess their effect, both signals were compared at the spectral level, focusing on frequency, brain symmetry and connectivity. During the task, a redistribution of power towards fast frequency bands was observed, as well as an improvement in the brain symmetry index (BSI) and functional synchronicity through increased coherence. Therefore, the results of the spectral analysis showed a possible deviation from the pathological pattern, manifesting a positive effect in the use of non-verbal cognitive stimulation activities. In conclusion, it was observed that it is possible to establish a cognitive training system that produces brain activation and favors communication and learning despite intentional language loss.Clinical Relevance- This manifests a method of cognitive training that would induce brain activation in RTT patients with absence of intentional communication. The evaluation system through spectral analysis could complement the standardized protocols to asses communication that are based on verbal and motor production.


Assuntos
Síndrome de Rett , Humanos , Feminino , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Tecnologia de Rastreamento Ocular , Projetos Piloto , Eletroencefalografia/métodos , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...